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Emergence of DWELL Mid-Infrared (IR)
Photo-detector
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B DWELL is a hybrid of Quantum Well (QW) and Quantum Dot (QD).

B InAs QDs are embedded in InGaAs-GaAs multiple QWs.

m DWELL structure is capable of reducing thermionic e mission -> lower
dark current -> higher device operating temperature by improving ph oton
absorption.

*W-Y. Jang, B. Paskaleva, M. M. Hayat, and S. Krishna, “Spectrally adaptive nanoscale quantum dot sensors,” Wiley Handbook of Science and Technology for
Homeland Security, in press, 2008.



Bias Tunabllity of DWELL

DWELL Bias-dependent spectra *
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B Bias tunability leads to the spectral .

shift (* red shift ") and the spectral A

overlap. 2 7 o5
Wavelength (um)

B The operating wavelength and nature of transition can be tailored by varying the
width and the material composition of the QW.

*S. Krishna, “InAs/InGaAs Quantum Dots in a Well Photodetectors,” Journal of Physics D (Applied Physics), vol.38, no.13, p.2142-50, July, 2005.



Multi-color Capability of DWELL

Conventional Multi/Hyper-spectral System
Outputs

B Multiple detectors are required.

B Use of a grating to different spectral regions of interest 1

B A broadband detector with a spinning filter wheel

DWELL based system
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B Single DWELL detector can be performed as multiple
detectors by bias tunability (*  Spectrally Adaptive 7).
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Structure of Single DWELL Device
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B Active region consists of QDs embedded
inside a QW.

tact
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B Growth schematic of single pixel detector

B Top view

*W-Y.Jang, M. M. Hayat, J. S. Tyo, R. S. Attaluri, T. E. Vandervelde, Y. D. Sharma, R. Shenoi, A. Stintz, E. R. Cantwell, S. Bender and S. Krishna,
“Demonstration of Bias Controlled Algorithmic Tuning of Quantum Dots in a Well (DWELL) Mid-infrared Detectors,” IEEE J. Quantum Electronics, in press, 2008.
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DWELL FPA Fabrication

Mesa etched _and Etched SIN Fully processed Fully processed PIiN 320 x 256 DWELL FPA
covered by SiN PiN FPA FPA after In re- flow

B Device processing




DWELL FPA Test Setup for Device
Characterization

Computer

Dewar

Camera Head

* Voltage Bias Generation
» A/D Hardware

» Timing Pattern Generator

e PC Interface

B Commercially available SE-IR CamlIRa™ demonstration s  ystem:
0 Janos Technology Ninox 3 ~12 um lens

[0 SE-IR CamlRa software, Closed cycle dewar, Camera Head electronics

[0 Extended (plate) Blackbody source
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Review of First Generation
INAs / InGaAs / GaAs DWELL FPA
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B Conduction band-diagram B Growth schematic of InAs / InGaAs / GaAs

of InAs / InGaAs / GaAs DWELL DWELL single pixel

[ Self-assembled QDs due to strain in the system due to lattice mismatch
[J Limited number of stacks of active region to avoid defects
[ Quantum efficiency (QE) using this DWELL structure is low.
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B Asymmetric conduction and valence
band-diagrams describing inter-sublevel
transitions:

I.  Bound-to-bound

ii.  Bound-to-quasi-bound
lii. Bound-to-continuum

B Corresponding spectral responsivity
Very long-wave IR (VLWIR)

Long-wave IR (LWIR)

O O O

Mid-wave IR (MWIR)



Development of Second Generation
InAs / InGaAs / GaAs / AlGaAs DWELL FPA
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B Conduction band-diagram of InAs / InGaAs / GaAs / AlGaAs double DWELL (DDWELL)

O Less strain in active region, leading to maximizet  he volume of the active
region » A higher number of stacks of active region gr own
» *“*Improvement of responsivity and QE

(**Reported by Shenoi et al. in JVSTB)

L1 Higher device operating temperature was observed

*W-Y.Jang, M. M. Hayat, S. C. Bender, Y. D. Sharma, J. Shao and S. Krishna, “Performance enhancement of an algorithmic spectrometer with quantum-dots-in-a-
well infrared photodetectors,” IEEE International Symposium on Spectral Sensing Research (ISSSR 08), June 23-27, 2008.
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B Bias-dependent spectral responses of “intermediate” DDWELL for different operating
temperatures at (a) 30K, (b) 50K, (c) 60K and (d) 77K.

*W-Y. Jang, M. M. Hayat, J. S. Tyo, R. S. Attaluri, T. E. Vandervelde, Y. D. Sharma, R. Shenoi, A. Stintz, E. R. Cantwell, S. Bender and S. Krishna,
“Demonstration of Bias Controlled Algorithmic Tuning of Quantum Dots in a Well (DWELL) Mid-infrared Detectors,” IEEE J. Quantum Electronics, in press, 2008.
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B Bias-dependent spectral responses of “complete” DDWELL for different operating
temperatures at (a) 60K, (b) 77K, (c) 100K and (d) 120K.

*W-Y. Jang, B. Paskaleva, M. M. Hayat, and S. Krishna, “Spectrally adaptive nanoscale quantum dot sensors,” Wiley Handbook of Science and Technology for
Homeland Security, in press, 2008.
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Procedure of Performance Measure

B For each pixel of the entire 320 x 256 FPA, obtain raw outputs (signal responses in
counts) at low, T, and high, T, , scene temperatures over 51 frames 51

| 2

B Calculate average responses Ry, and Ry, over 51 frames

}

B o at lower scene temperature over 51 frames is the noise value (N) at each pixel

}

m Find response-to-noise ratio from Ry/ N = (Ryign— Roy) / N

}

B NEDT (Noise Equivalent Difference in Temperature)

OAT=T,-T, ) AT

OR, =response between T,and T,  NEDT = [K ]
O Measure of sensitivity R

O Minimum uniform scene temperature %

difference a system can detect

*E. L. Dereniak and G. Boreman, “Infrared Detectors and Systems,” Wiley, New York, 1996.



First Generation InAs / InGaAs /| GaAs DWELL
FPA
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B Histogram and 3-D plot of NEDT at FPA temperatures and a Bias of 0.82 V



Number of Pixels
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Second Generation InAs / InGaAs / GaAs /
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Comparison of DWELL FPAs with Commerical
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_ Current efforts to “catch up” QWIP FPA

T_: O Shape engineering of QDs

O Grating equipped DWELL FPA (for absorption enhancement)
O More stacks on active region (further improvement of QE)
O *Resonant-tunneling DWELL (for dark-current reduction)

(*Reported by Barve et al. in APL, GSU/MICH groups)
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Bias Tunability and Multi-color Capabillity of
Second Generation DWELL (DDWELL) FPA

Frame 13 Frame 53 Frame 50 Frame 24

8 —11 um
-

m NUC scenes are taken at a FPA temperature of 60 K and a bias of 0.5 V using hot
soldering iron, six different optical filters with bandwidths (i.e. from left to right, 3 — 4 um,
4-5um,7.5-95um,8-11um, 9—-12 um and 10 — 13 um) and 3 — 12 um lens.

Frame 10 Frame 14 Frame 40 Frame 20
4-5pm = 8 — 11 pm
:. i ; .

-

m NUC scenes are taken at a FPA temperature of 60 K and a bias of 1.3V



Application of Bias Tunabllity to SF  , and NH
Gas detections with DDWELL FPA

NH, and SF detections with DDWELL FPA @ 0.3V NH, and SF detections with DDWELL FPA @ 0.4V NH, and SF detections with DOWELL FPA @ 0.6 V
LA
50 .
100
SF; NH
200
250 . . ) |
50 100 150 200 250 300 50 100 150 200 250 300

NH, and SF; detections with DDWELL FPA @ 0.8V

NH, and SF; detections with DDWELL FPA@ 1.2V

50 100 150 200 250 300 50 150 200 250 300

50 100 150 200 250 300

NH3 and SFE detections with DDWELL FPA @ 1.3V NH3 and SFE detections with DDWELL FPA @ 1.4V NH3 and SFE detections with DDWELL FPA @ 1.5V

100 150 200 250 300 50 100 150 200 250 300

B NUC images of SF;and NH; detected at a FPA temperature of 60 K and various applied
biases (V) from 0.3to 1.5 V.



B Overall decrease in ratio
(SFg/ BB) =9.07 % from 0.3 t0 0.8 V
(NH; / BB) = 3.87 %

Overall increase in ratio
(SFs/BB) =8.16 % from 0.9to 1.5V
(NH; /BB) = 3.4 %

m High SF 4 absorptions observed at a bias

range from 0.6 to 0.9 V.

Viiae (V) Change in ratio Description
0.3 0.00 (%) 0.00 (%) | NH;: Outputs obtained by
0.4 -2.91 (%) -1.34 (%) | averaging over 630 pixels.
0.6 -4.60 (%) -1.99 (%)

0.7 -0.67 (%) 0.01 (%) | SFg: Outputs obtained by
0.8 -0.89 (%) -0.55 (%) averaging over 780 pixels.
0.9 1.22 (%) 0.81 (%) _
1.0 2.20 (%) 0.73 (%) BB: Blafckbody cgntmdtered
as a reference. Outputs
1.1 2.46 (%) 0.76 (%) obtained by averaging over
1.2 1.54 (%) 0.40 (%) | 936 pixels.
1.3 0.26 (%) 0.37 (%)
1.4 0.52 (%) 0.31 (%)
1.5 -0.04 (%) 0.02 (%)
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Non-Uniformity Correction (NUC): System
Model

B [n a FPA, the gain (A) and the offset (B) parameters determine,
at sample-time k, the response of the ij-th photo-detector:

Y'Tk]= A'TU[k]+ B" + V "[k]
B Assumptions:

[1 A and B drift slow with sample-time k
O Vi[k] additive zero-mean white noise with know variance s2

B NUC gquestion is: How to obtain the real incident radiation data
(T) from the noisy readout data (Y)?

B NUC goals are:
[1 parameter estimation of each photodetector
[1 compensation of the corrupted image sequences



Non-Uniformity Correction (NUC): Multiple-
Point Calibration

N
__J'
T
=

RESPONSE (PHOTOCURRENT)
RESPONSE (PHOTOCURRENT)

" TEMPERATURE %’/ TEMPERATURE
(a) (b)

(a) Example of different detector responses  (b) Multiple-point linear approximations
to incident temperature of responses

* Unal’'s Ph.D. dissertation, University of New Mexico, 2006



Calibration and Non-Uniformity Correction

Offline computations
' = [A]weres

Black Body data

= I ]

Calibrated Post-processed
video video

B Capabilities
[0 Real-time NUC and scene-based NUC
[0 Real-time post-processing: Spatial filtering and dead-pixel correction

[0 Temperature measurement, raw and corrected video acquisition



B Multiple-point NUC scenes of DDWELL FPA

B Multiple-point NUC in real time was tested with five different temperatures (26 ~ 30 °C).

B FPA temperature = 60 K, Frame rate = 30 Hz, Int. time = 11.52 ms and Bias = 1.0 V.
3 ~ 12 um lens was used.

B Bad pixel replacement and spatial filtering were used to optimize the scene.



Demonstrations of Temperature _

' mSoldering iron: > 70 °C
BL A QDIP Camera Controller
ﬂﬁ' (~ red)

— BCold source: < 10 °C
( ~ dark blue)

— BArm: ~ mid 30 °C
( ~ light blue)

HMFalse-color display

a#&. QDIP Camera Controller
i o

e i e - m Cooled InSb detector surface:
| between 15 and 20 °C
(~ light blue)
- [0 near detector aperture:
~5°C or less (~ dark blue)

- BCup with hot water:
> 35 °C ( ~ dark blue)

~ EmFace: ~ mid 30 °C
( ~ light red)




Visual Comparisons between Commercial
Two-point NUC and Multiple-point NUC

AN

M Facial images of DDWELL FPA corrected M Corrected images by multiple-point NUC
with commercial two-point NUC. (9 points from 26 to 60 °C).
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B The second generation DWELL FPA was developed by
optimizing the device growth and processing learned from the first
generation device structure. Higher operating temperature was
observed on the second generation device

B DWELL FPAs were characterized for various device operating
temperatures and biases. Performances were evaluated by NEDT
and compared to QWIP FPA. Performance results demonstrate
our DWELL device is “improving” toward QWIP.

B Bias-tunability and multi-color capability of DWELL FPAs were
demonstrated with various optical filters.

B Bias-tunability was further examined for NH; and SF; gas
detections.

B Real-time multiple-point NUC was successfully developed and
Implemented to DWELL FPA as a post-processing algorithm.
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